์ „์ฒด ๊ธ€ 202

Attention Is All You Need

์ด๋ฒˆ์ฃผ๋ถ€ํ„ฐ ํ•œ ์ฃผ์— ํ•˜๋‚˜์˜ ๋…ผ๋ฌธ์„ ์ฝ์–ด๋ณด๋ ค๊ณ  ํ•œ๋‹ค. ๋‚˜ ์ž˜ํ•  ์ˆ˜ ์žˆ๊ฒ ์ง€ ? ^_^ ๐Ÿ’ฌ ๋…ผ๋ฌธ ๋‚ด์šฉ๊ณผ ์ด ๊ธ€์— ๋Œ€ํ•œ ์˜๊ฒฌ ๊ณต์œ , ์˜คํƒˆ์ž ์ง€์  ํ™˜์˜ํ•ฉ๋‹ˆ๋‹ค. ํŽธํ•˜๊ฒŒ ๋Œ“๊ธ€ ๋‚จ๊ฒจ์ฃผ์„ธ์š” ! ์›๋ฌธ : https://arxiv.org/pdf/1706.03762.pdf Abstract dominantํ•œ sequence transduction ๋ชจ๋ธ๋“ค์€ ๋ณต์žกํ•œ RNN/CNN ๊ตฌ์กฐ → Attention ๋งค์ปค๋‹ˆ์ฆ˜๋งŒ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜๋Š” ์ƒˆ๋กญ๊ณ  ๊ฐ„๋‹จํ•œ ๊ตฌ์กฐ์˜ Transformer ์ œ์•ˆ 2022. 3. 4 ์ถ”๊ฐ€ Transformer ์š”์•ฝ : ํ•™์Šต๊ณผ ๋ณ‘๋ ฌํ™”๊ฐ€ ์‰ฝ๊ณ  attention ๊ตฌ์กฐ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์†๋„๋ฅผ ๋†’์ธ ๋ชจ๋ธ Introduction Attention ๋งค์ปค๋‹ˆ์ฆ˜์€ ์ž…๋ ฅ, ์ถœ๋ ฅ ๊ฐ„ ๊ฑฐ๋ฆฌ์— ์ƒ๊ด€์—†์ด modeling์„ ํ•  ์ˆ˜ ์žˆ๊ฒŒ ํ•œ๋‹ค๋Š” ์ ์—..

[BOJ] 11256๋ฒˆ: Jelly Bean

๋ฌธ์ œ ์ž…์ถœ๋ ฅ ์˜ˆ์‹œ ํ’€์ด์ด๊ฒƒ๋„ ์ž‘๋…„์˜ ๋‚ด๊ฐ€ ๋ชป ํ’€์—ˆ๋˜ ๋ฌธ์  ๋ฐ ํ•ต์‹ฌ ํ‚ค์›Œ๋“œ๋Š” ์ •๋ ฌ! ์ž‘๋…„ ์ฝ”๋“œ ๋ณด๋‹ˆ๊นŒ ์ •๋ง ์ƒ๊ฐ ์•ˆํ•˜๊ณ  ํ‘ผ ํ”์ ์ด ๊ทธ๋Œ€๋กœ ๋‚จ์•„์žˆ๋˜๋ฐ ์—ญ์‹œ ์‚ฌ๋žŒ์€ ์ƒ๊ฐ์„ ํ•˜๊ณ  ์‚ด์•„์•ผ ํ•œ๋‹ค ^_^

[BOJ] 5177๋ฒˆ: Format Error!

๋ฌธ์ œ ํ’€์ด์‚ฌ์‹ค ์–ด๋ ค์šด ๋ฌธ์ œ๋Š” ์•„๋‹Œ๋ฐ 1๋…„ ์ „์˜ ๋‚ด๊ฐ€ ๋ชป ํ’€์—ˆ๋˜ ๋ฌธ์ œ๋ผ์„œ ๋‹ค์‹œ ๋ดค๋‹ค. ๋ฌธ์ œ ์ œ๋Œ€๋กœ ์ฝ์œผ๋‹ˆ๊นŒ ๋ฐ”๋กœ ํ’€๋ ค๋ฒ„๋ ธ๊ณ ,,^^ ์กฐ๊ฑด๋Œ€๋กœ ๋”ฐ๋ผ๊ฐ€๊ธฐ๋งŒ ํ•˜๋ฉด ๋˜๋Š”๋ฐ ์กฐ๊ธˆ ๊ณ ๋ฏผํ•ด์•ผํ•  ๋ถ€๋ถ„์€ 'ํŠน์ˆ˜ ๋ถ€ํ˜ธ์˜ ๋ฐ”๋กœ ์•ž์ด๋‚˜ ๋ฐ”๋กœ ๋’ค์— ๋‚˜์˜ค๋Š” ๊ณต๋ฐฑ๋„ ์žˆ์œผ๋‚˜ ์—†์œผ๋‚˜ ์ƒ๊ด€์—†๋‹ค.' ์ด๊ฒƒ! ์ž‘๋…„์— ์ œ์ถœํ•œ ์ฝ”๋“œ ๋‹ค์‹œ ๋ณด๋‹ˆ๊นŒ ์ € ์กฐ๊ฑด ์ƒ๊ฐ๋„ ์•ˆํ•˜๊ณ  ์ œ์ถœํ•ด๋†“๊ณ  ์–ด ์™œ ํ‹€๋ ธ์ง€ ์ด๋Ÿฌ๊ณ  ์žˆ์—ˆ์Œ ๋‹ค๋ฅธ ์กฐ๊ฑด๋“ค์€ ๋‚ด์žฅํ•จ์ˆ˜๋ฅผ ์ž˜ ์‚ฌ์šฉํ•˜๋ฉด ๋˜๊ณ  ํŠน์ˆ˜ ๋ถ€ํ˜ธ ์•ž๋’ค ๊ณต๋ฐฑ ์ฒดํฌํ•˜๋Š” ๊ฑด ์ฝ”๋“œ๊ฐ€ ๋„ˆ๋ฌด ์ง€์ €๋ถ„ํ•ด์งˆ ๊ฑฐ ๊ฐ™์•„์„œ ํ•จ์ˆ˜๋กœ ๋งŒ๋“ค์—ˆ๋‹ค. ํ•จ์ˆ˜ ์งค ๋•Œ ์ƒ๊ฐํ•œ ๋‹จ๊ณ„๋Š” ์•„๋ž˜์™€ ๊ฐ™๋‹ค. โ‘  ๋ฌธ์ž์—ด์„ ํ•˜๋‚˜์”ฉ ํ›‘์œผ๋ฉด์„œ ํŠน์ˆ˜ ๋ถ€ํ˜ธ์ธ์ง€ ํ™•์ธโ‘ก ํŠน์ˆ˜ ๋ถ€ํ˜ธ์ผ ๋•Œ ํ•ด๋‹น ์œ„์น˜ ์•ž, ๋’ค์— ๊ณต๋ฐฑ์ด ์žˆ๋Š”์ง€ ํ™•์ธโ‘ข ๊ณต๋ฐฑ์ด ์žˆ๋‹ค๋ฉด ๋‹ค๋ฅธ ๊ธฐํ˜ธ๋กœ ๋ฐ”๊ฟ”์ฃผ๊ณ  ๋Œ€์ฒด ๊ธฐํ˜ธ๋ฅผ ๋ชจ๋‘ ์ œ๊ฑฐํ•œ ๊ฐ’์„ ๋ฆฌ..

2022/1์›”ํ˜ธ

๐Ÿ“– AI๋ณด์•ˆ ์ชฝ ์—ด์‹ฌํžˆ ๋ดค๋‹ค. ๋…ผ๋ฌธ๋„ ์ฝ๊ณ  ์ฝ”๋“œ ๋ถ„์„๋„ ํ•˜๊ณ  ๋ธ”๋กœ๊ทธ์— ๋‚ด์šฉ ์ •๋ฆฌ๋„ ๋ช‡ ๋ฒˆ ํ•˜๊ณ  ๋‚˜๋ฆ„ ์ด๊ฒƒ์ €๊ฒƒ ํ•ด์„œ ๋ฟŒ๋“ฏ. ์—ฐ๊ตฌ์‹ค์— ๋“ค์–ด์˜ค์ง€ ์•Š์•˜๋‹ค๋ฉด ์ „ํ˜€ ๋ชฐ๋ž์„ ๋ถ„์•ผ์˜€๊ธฐ ๋•Œ๋ฌธ์— ์—ฐ๊ตฌ์‹ค ์ž˜ ์™”๋‹ค๋Š” ์ƒ๊ฐ์ด ๋“ค์—ˆ๋‹ค. 1์›” ํ•œ ๋‹ฌ์„ ๋Œ์•„๋ณด๋ฉด์„œ ๋‚˜ ์ž์‹ ์—๊ฒŒ ์•„์‰ฌ์šด ์ ์€ ์—ฐ๊ตฌ(?)์˜ ํšจ์œจ์ด ์ข‹์ง€ ์•Š๋‹ค๋Š” ๊ฒƒ์ด๋‹ค. ๋ฐฅ ๋จน๋Š” ์‹œ๊ฐ„๊ณผ ์ค‘๊ฐ„์ค‘๊ฐ„ ์‰ฌ๋Š” ์‹œ๊ฐ„ ๋‹ค ๋นผ๊ณ  ๋‚จ๋Š” ์‹œ๊ฐ„์— ์˜จ์ „ํžˆ ์ง‘์ค‘์„ ๋ชปํ•œ๋‹ค. ํ•˜๋ฃจ์ข…์ผ ๋…ผ๋ฌธ ํ•œ ํŽธ์„ ๋ชป ์ฝ์„ ๋•Œ๋„ ์žˆ๊ณ , ์ฝ”๋“œ ํ•˜๋‚˜๋ฅผ ๋‹ค ๋ถ„์„ ๋ชปํ•  ๋•Œ๋„ ์žˆ๋‹ค. ์—ฐ๊ตฌ์‹ค์—์„œ ์ €๋ ‡๋‹ค๋ณด๋‹ˆ๊นŒ ํ”Œ๋ž˜๋„ˆ์— ์ •๋ฆฌํ• ๋งŒํ•œ ๋‚ด์šฉ์ด ํ•œ ๋‘๊ฐœ ๋ฐ–์— ์—†๊ธธ๋ž˜ ํ”Œ๋ž˜๋„ˆ ์ž‘์„ฑ์„ ์ผ์ฃผ์ผ ๋‹จ์œ„๋กœ ๋ฐ”๊ฟจ๋Š”๋ฐ ์š”์ฆ˜ ๋‹ค์‹œ ์ผ ๋‹จ์œ„๋กœ ์“ธ๊นŒ ์ƒ๊ฐ ์ค‘์ด๋‹ค. ์ž˜ํ•˜๊ณ  ์‹ถ๋‹ค๋Š” ์ƒ๊ฐ์€ ์ž์ฃผ ํ•˜๋ฉด์„œ ๋ช‡ ๋‹ฌ ์งธ ์–ธํ–‰๋ถˆ์ผ์น˜์ธ์ง€ ^^! ๐Ÿ’ป๊ณต๋ถ€ํ•œ ๊ฑฐ ์ ์šฉํ•ด๋ณด๋ ค๊ณ  ๋ฐ์ด..

[์ •๋ฆฌ] Encoding ๊ด€๋ จ API

1. LabelEncoder() : target values๋ฅผ 0~(ํด๋ž˜์Šค ๊ฐœ์ˆ˜-1) ์‚ฌ์ด ์ •์ˆ˜๋กœ ์ธ์ฝ”๋”ฉ โ—พ ๋ณ€ํ™˜ ์‹œ ์•ŒํŒŒ๋ฒณ/ํ•œ๊ธ€ ์ˆœ์„œ๋ฅผ ๋ฐ˜์˜ํ•œ๋‹ค. → a, ใ„ฑ: 0 โ—พ input์ด ์•„๋‹Œ target values๋งŒ ์ ์šฉ๋˜์–ด์•ผ ํ•œ๋‹ค. ์ž์„ธํžˆ from sklearn.preprocessing import LabelEncoder, OneHotEncoder, MinMaxScaler, StandardScaler le = LableEncoder() label = np.array(['dog', 'cat', 'tiger', 'rabbit', 'pig']) le.fit_transform(label) 2. OneHotEncoder() : ๋ฒ”์ฃผํ˜• feature๋ฅผ one-hot numeric array๋กœ ๋ณ€ํ™˜ โ—พ sparse=..

Adversarial Examples in the Physical World

์‚ฌ์‹ค ๋ถ„์„๋ณด๋‹ค ์ง์—ญ์— ๊ฐ€๊น์ง€๋งŒ ๋‚ด์šฉ ์ •๋ฆฌ ๋ฐ ์ง‘๋‹จ ์ง€์„ฑ์˜ ํž˜์„ ๋นŒ๋ ค ๋‚ด๊ฐ€ ์ž˜ ๋ชฐ๋ž๋˜ ๋ถ€๋ถ„์„ ์ดํ•ดํ•˜๊ธฐ ์œ„ํ•œ ๋ชฉ์ ์œผ๋กœ ์ ๋Š”๋‹ค. ๐Ÿ’ฌ ๋…ผ๋ฌธ ๋‚ด์šฉ๊ณผ ์ด ๊ธ€์— ๋Œ€ํ•œ ์˜๊ฒฌ ๊ณต์œ , ์˜คํƒˆ์ž ์ง€์  ํ™˜์˜ํ•ฉ๋‹ˆ๋‹ค. ํŽธํ•˜๊ฒŒ ๋Œ“๊ธ€ ๋‚จ๊ฒจ์ฃผ์„ธ์š” ! ์›๋ฌธ : https://arxiv.org/abs/1607.02533 Abstract โ—พ ์ด ๋…ผ๋ฌธ์€ ๋ฌผ๋ฆฌ์  ์„ธ๊ณ„์—์„œ๋„ ๋จธ์‹ ๋Ÿฌ๋‹ ์‹œ์Šคํ…œ์ด adversarial example์— ์ทจ์•ฝํ•˜๋‹ค๋Š” ๊ฒƒ์„ ๋ณด์ž„ Introduction โ—พ ๋จธ์‹ ๋Ÿฌ๋‹ ๋ชจ๋ธ์€ ์˜ค๋ถ„๋ฅ˜๋ฅผ ์ผ์œผํ‚ค๊ธฐ ์œ„ํ•œ ๋ชฉ์ ์œผ๋กœ ๋งŒ๋“ค์–ด์ง„ adversarial manipulation input์— ์ทจ์•ฝํ•˜๋ฉฐ ํŠนํžˆ ํ…Œ์ŠคํŠธ ์‹œ ๋ชจ๋ธ์ด ๋ฏธ์„ธํ•˜๊ฒŒ ๋ณ€๊ฒฝ๋œ ์ž…๋ ฅ์„ ๋ฐ›๋Š” ๊ฒƒ์— ๋Œ€ํ•ด ๋งค์šฐ ์ทจ์•ฝํ•จ โ—พ ๋จธ์‹ ๋Ÿฌ๋‹ ๋ชจ๋ธ M, ์ž…๋ ฅ ์ƒ˜ํ”Œ C(๋ณ€๊ฒฝ๋˜์ง€ ์•Š์€ ๊นจ๋—ํ•œ ์ƒํƒœ์˜ ์ƒ˜ํ”Œ)๊ฐ€ ..

[ART] attack_adversarial_patch_TensorFlowV2.ipynb ์ฝ”๋“œ ๋ถ„์„

jupyter notebook์œผ๋กœ ์ฝ”๋“œ ๋Œ๋ฆฌ๋Š”๋ฐ ์งœ์ž˜ํ•œ ์—๋Ÿฌ๊ฐ€ ์ž๊พธ ๋– ์„œ ์˜ค๋Š˜์€ ์‚ฝ์งˆ ์ข€ ํ–ˆ๋‹ค ๐Ÿ˜ข โœ… ์ฝ”๋“œ ์›๋ณธ : https://github.com/Trusted-AI/adversarial-robustness-toolbox/blob/main/art/attacks/evasion/adversarial_patch/adversarial_patch.py GitHub - Trusted-AI/adversarial-robustness-toolbox: Adversarial Robustness Toolbox (ART) - Python Library for Machine Learning S Adversarial Robustness Toolbox (ART) - Python Library for Machine Learning..

[ART] attack_defence_imagenet.ipynb ์ฝ”๋“œ ์‹ค์Šต

์›๋ณธ ์ฝ”๋“œ๋ฅผ ๋Œ๋ ค๋ณด๊ณ  ๋๋‚ด๋Š” ๊ฒƒ์ด ์•„๋‹ˆ๋ผ attack/defence์— ๋Œ€ํ•œ ์ฝ”๋“œ๋ฅผ ์กฐ๊ธˆ์”ฉ ๋ฐ”๊ฟ”๋ณด๋ฉด์„œ ์‹ค์Šต์„ ์ง„ํ–‰ํ–ˆ๋‹ค. โœ… ์ฝ”๋“œ ์›๋ณธ : https://github.com/Trusted-AI/adversarial-robustness-toolbox/blob/main/notebooks/attack_defence_imagenet.ipynb GitHub - Trusted-AI/adversarial-robustness-toolbox: Adversarial Robustness Toolbox (ART) - Python Library for Machine Learning S Adversarial Robustness Toolbox (ART) - Python Library for Machine Learning Securit..

[Sklearn] ValueError: Found input variables with inconsistent numbers of samples

jupyter notebook์—์„œ Bagging ์‹ค์Šต์„ ํ•˜๋˜ ์ค‘์— ๋œฌ ์—๋Ÿฌ ๋ฉ”์‹œ์ง€์ด๋‹ค. [398, 171]์˜ ์ถœ์ฒ˜๋ฅผ ์•Œ์•„์•ผ ํ•˜๋Š”๋ฐ fit() ํ•จ์ˆ˜ ํŒŒ๋ผ๋ฏธํ„ฐ๊ฐ€ X_train, y_train์ด๊ธฐ ๋•Œ๋ฌธ์— ๋‘ ๊ฐœ๋ž‘ ๊ด€๋ จ์ด ์žˆ์„ ๊ฒƒ์œผ๋กœ ์ƒ๊ฐํ•˜๊ณ  shape๋ฅผ ํ™•์ธํ•ด๋ดค๋‹ค. ์˜ค๋ฅ˜ ์›์ธ์€ ๋ฐ์ดํ„ฐ ๋ถ„ํ•  ์ˆœ์„œ์˜€๋‹ค. train๋ผ๋ฆฌ ๋ฌถ๊ณ  test๋ผ๋ฆฌ ๋ฌถ์–ด์•ผ์ง€ ์ด ์ƒ๊ฐ์œผ๋กœ ์ฒซ๋ฒˆ์งธ์ฒ˜๋Ÿผ data๋ฅผ ๋ถ„ํ• ํ–ˆ๋”๋‹ˆ ์—๋Ÿฌ๊ฐ€ ๋‚œ ๊ฑฐ์˜€๋‹ค. ๋ฐ์ดํ„ฐ ๋ถ„ํ•  ์‹œ ์ˆœ์„œ๋ฅผ ์ž˜ ๋งž์ถฐ์ฃผ๋ฉด ํ•ด๊ฒฐ ๊ฐ€๋Šฅํ•˜๋‹ค.

[ART] adversarial_training_mnist.ipynb ์ฝ”๋“œ ๋ถ„์„

โœ… ์ฝ”๋“œ : https://github.com/Trusted-AI/adversarial-robustness-toolbox/blob/main/notebooks/adversarial_training_mnist.ipynb GitHub - Trusted-AI/adversarial-robustness-toolbox: Adversarial Robustness Toolbox (ART) - Python Library for Machine Learning S Adversarial Robustness Toolbox (ART) - Python Library for Machine Learning Security - Evasion, Poisoning, Extraction, Inference - Red and Blue Teams..